Heifer care and management
Nutrition for the Early Developing Heifer

Several factors can dramatically reduce replacement-rearing cost and increase potential profits for the producer: 
(1) maximizing immunity from colostrum to minimize mortality and sickness, 
(2) formulating rations for specific weight gains during strategic  periods of development and avoiding over-fattening prior to puberty  because it impairs mammary development, 
(3) formulating rations for an average daily gain of 1.8 lb. for Holstein heifers, 
(4) using AI sires ranking in the top 20% for (PTA$) to optimize genetic improvement, 
(5) monitoring age, body weight, wither height, body condition score as  well as peak milk and ME milk yield of first lactation heifers to  evaluate management at first calving, and 
(6) controlling the size of the replacement herd by calving heifers at 24 months and raising no more than needed. 
Calf Milk and Supplementation
Calves should be maintained on whole milk or a high quality milk  replacer until calves are eating adequate amounts of grain to sustain  rapid growth and rumen development. Whole milk, in general, can be found  in one of three forms on the average dairy farm: Extra colostrum or  transition milk, nonsaleable milk (eg, mastitic/antibiotic tainted) and  saleable milk. Of these, extra colostrum/transition milk is preferred  because of its superior nutritional value, and because it cannot be  sold. This milk can be preserved via fermentation (propionic acid) or  freezing. 
Mastitic milk is an area of controversy in relation to safety and the  "seeding" of mastitis causing organisms, especially relative to  Staphylococcus aureus. Mastitic milk should only be fed if it has the  appearance of normal milk. Milk containing visual signs of yellow  material (pus), clots or blood should not be fed to calves. Since milk  containing antibiotics has been associated with slower growth and higher  rejection rates, it is the least preferred form of supplementation,  including milk replacer with antibiotics. 
Milk replacers should be of the highest quality so as to mimic whole  milk as closely as possible. To maintain growth levels, replacers should  contain 20% protein, a minimum of 15% fat (dependent on environmental  temperatures) and less than 0.25% crude fiber (Table 1). In colder  climates, producers may want to increase the fat level to 20% or higher  for adequate energy intake. Periods of heat stress may be another time  to increase the fat level of the milk replacer. Calves will decrease  intake during times . extreme heat, and feeding higher levels of fat  will make a more energy-dense ration. The higher the crude fiber levels,  the higher the plant origin ingredients, and the cheaper the milk  replacer. Calves less than one month of age are incapable of digesting  or breaking-down a high amount of crude fiber and can have digestive  upsets leading to diarrhea and dehydration. These higher crude fiber  rates (cheaper milk replacer) lead to an increased rate of passage  through the gut (diarrhea), but just as important, they are a large  reason for poor weight gains during the early development period. 
| Table 1:Feed Tag Recommendations for Milk Replacer | |||||
| 
      Nutrient 
      | 
     Percent on feed tag | ||||
| Protein | 20 to 24% | ||||
| Fat* | 15%* | ||||
| Crude Fiber | 00.25% | ||||
 
The feed tag (Table 1) provides important information on the quality of a  milk replacer. Protein, fat, and fiber levels as well as the sources of  protein and energy should be scrutinized. Protein sources such as dried  skim milk, whey products, and modified soy products are preferred,  whereas other sources such as wheat flour, fish by-products, and meat  solubles are considered to be inferior. Ideally, protein sources should  be listed specifically and not defined in collective terms such as  "animal protein products" or "plant protein products," because these  terms may include many different ingredients. While either animal or  vegetable fat can be used, carbohydrate content should consist almost  exclusively of lactose. Many milk replacers are medicated with  antibiotics, but this often proves be of little benefit because of the  extremely low levels that are fed. Medicated feeds may improve  performance and a specific coccidiostat like Decoquinate, Rumensin®,or  Bovatec® can aid in the prevention of coccidiosis. Milk replacer powder  should have a pleasant odor and should be cream to light tan in color,  as well as free of lumps and foreign material. The powder should mix  into solution easily and, once reconstituted, should remain cream to  light tan in color. Calves should initially be fed 8-10% of their body  weight, divided into two feedings per day. It is important to remember  that this will vary depending on ambient temperature and stress level.  For instance, as temperatures fall below freezing, high energy milk  replacer quantity should be increased by 30 to 50%, whereas calves that  have been shipped for long distances should be started on lower  quantities for the first few feedings. As the calf grows, the same  absolute volume of milk replacer (8 to 10% of the birth weight) should  be maintained to encourage calf starter (grain) consumption and clean,  fresh water should be available at all times. Free access to fresh water  encourages more grain intake, leading to an earlier weaning. In several  surveys of dairies, age at freshening is often extended by one or two  months because nutritional programs for nursing calves are below  optimum.
Weaning and feed supplementation
 Weaning should depend on the individual calf's eating habits and not on  some preset weaning age. Generally, calves should be eating  approximately 1.5% of their body weight in grain at the time of weaning.  The feeding of high quality calf starter is a critical factor in  successful weaning. It should be palatable, containing coarsely ground  or crimped grains, with molasses added to improve taste and control  dust. It should contain 18 to 20% crude protein, 72% TDN, 0.6% Calcium,  0.45% Phosphorous, 0.24% Magnesium, 0.24% Sulfur, and 0.70% Potassium.  Researchers are debating the value of feeding hay to nursing calves. Hay  and grain are both important in the production of rumen volatile fatty  acids (VFAs). These VFAs are by-products of digestion which are utilized  for energy and growth. However, grains (concentrate) have been shown to  play a more critical role in the formation of rumen papillae, which are  finger-like projections in the rumen designed for absorption of  nutrients. Diets high in energy value (grains) result in the formation  of greater concentrations of butyric and propionic acids. These VFAs  have a considerably greater effect than acetate, a by-product of the  digestion of hay, on the formation of rumen papillae by stimulating  blood flow to the rumen, resulting in increased rumen growth and  activity. As a calf's rumen size increases (eight times its birth size)  by the eighth week of life, optimum levels of calf starter should be at 2  to 3 pounds/calf/day prior to weaning. If hay is fed to nursing calves,  it should be of the highest quality. The problem with feeding hay is  that it contains much less energy than grain and can delay weaning due  to lower energy intake from rain sources. Studies at the Virginia Tech  Dairy Center have found no benefit in feeding hay before weaning. (See  Figure 1) 
 

^ BCS (Bodily Condition Score) stratified by growth periods
If a Holstein heifer weighs 80 lbs at birth and our goal is a 1350 lb  heifer 24 months later at calving, she must gain an average of 1.8 lbs  per day. However, this is only an average gain over the entire 24-month  development period. Gains will be less earlier in life and will increase  to 2 lbs per day after 11 to 12 months of age (see Figure 1). Breeding  age heifers are often overlooked, receiving the refusal from the  lactating cows, or inadequately designed heifer rations. Rations must be  tailored to meet the needs of partitioned age groups of heifers.  Heifers should be grouped according to age and body weight to  accommodate their competitive nature for feedstuff. Formulation of  heifer rations should be based on nutritional analysis of feed  components. This is the single most important way to guarantee that  heifers are fed for optimal weight gain as well as skeletal (bone)  development. Calves should be individually housed for two weeks after  weaning. For one to two months subsequent to this, they should be housed  in groups of 4-5, acclimating them to feedbunk competition. Further  groupings should be matched by age and weight of the heifers (Table 2). 
| Table 2: Age and weight groupings of heifers | |||||
| Age of Heifers | Weight range | ||||
| 
      6 to 10 months 
      | 
     300 to 525 lbs | ||||
| 
      11 to 14 months 
      | 
     525 to 750 lbs | ||||
| 
      Breeding age(14 to 15 months) 
      | 
     750 to 850 lbs | ||||
| 
      Bred heifers 
      | 
     850 to 1200 lbs | ||||
| 
      Springing heifers 
      | 
     1100 to 1350 lbs | ||||
Bunk management is essential for adequate growth and development. Bunk  space is allocated according to the weight and size of the pen of  heifers. Each calf requires up to 12 to 18 inches of linear bunk space  up to approximately 900 lbs. At approximately 1000 lbs, bunk space  should be increased to 2 linear feet of bunk space if feed is not  available at all times. Bunk space requirements are also dependent on  the number of feedings per day, with once a day feeding requiring more  linear feet of bunk space. 
| Typical nutrient values for forages and feeds used in sample rations.* | |||||
| Feed | DM% | CP% | TDN% | ADF% | Price/ton | 
| 
      1st cut orchard grass 
      | 
     87 | 10.4 | 55 | 45 | 55 | 
| 
      2nd cut orchard grass 
      | 
     87 | 15 | 60 | 38 | 70 | 
| 
      Alfalfa silage 
      | 
     35 | 17 | 62 | 33 | 45 | 
| 
      Corn silage 
      | 
     38 | 7.5 | 67 | 28 | 30 | 
| 
      16% CP Conc. 
      | 
     89 | 18 | 81 | 10 | 165 | 
| 
      20% CP Conc. 
      | 
     89 | 22.5 | 81 | 10 | 175 | 
| Sample rations using typical forages grown and harvested in the Mid-Atlantic States. (lb. / day /heifer) See chart below * | |||||||
| Body weight | 1st cut O. grass | 2nd cut O. grass | Alfalfa Silage | CornSilage | 16% CP Conc. | 20% CP Conc. | Conc. Cost per Day | 
| 
      400 lbs 
      | 
     8 | 4 | $0.33 | ||||
| 11 | 11 | 3.5 | $0.29 | ||||
| 
      600 lbs 
      | 
     8 | 10 | 5 | $0.44 | |||
| 18 | 18 | 2.5 | $0.21 | ||||
| 
      800 lbs 
      | 
     22 | 22 | 3.0 | $0.25 | |||
| 
      1000 lbs 
      | 
     12 | 15 | 7.0 | $0.61 | |||
| 30 | 20 | 4 | $0.33 | ||||
 
Bunk management is essential for adequate growth and development. Bunk  space is allocated according to the weight and size of the pen of  heifers. Each calf requires up to 12 to 18 inches of linear bunk space  up to approximately 900 lbs. At approximately 1000 lbs, bunk space  should be increased to 2 linear feet of bunk space if feed is not  available at all times. Bunk space requirements are also dependent on  the number of feedings per day, with once a day feeding requiring more  linear feet of bunk space. 
Rations for 400-lb heifers were based on either second cutting  orchardgrass hay or alfalfa and corn silage. Due to the higher forage  quality of second cut grass, there are only small differences in  concentrate costs between the two alternatives. As heifers gained  weight, increasing quantities of concentrates were necessary to meet  requirements for energy and protein. These result in high concentrate  costs per heifer. Note that the substitution of average quality alfalfa  silage for 1st cutting orchardgrass allowed using fewer lb. of a 16%  concentrate and substantial cost savings. Forage quality has a  significant influence on supplemental feed costs. 
Bibliography
Bailey TL: Economic Considerations of dairy heifers. Proc of the Society for Therio. San Antonio, Tx., pp 56-59, 1992.
Braun RK, et al: Body condition scoring dairy cows as a herd management tool. Comp on Cont Ed Pract Vet 9:F192-F200, 1987.
Donovan GA, et al: Evaluation of dairy heifer replacement-rearing  programs. Comp on Cont Ed Pract Vet Vol 9 No 4:F133-F138. 1987. 
Fiez E: Sizing up heifer age. Dairy. pp. 6-8, January, 1989. 
Gardner CE: Dairy practice management. Vet Clin North Am [Food Anim Pract] 5,1989. 
Gardner RW, et al: Accelerated growth and early breeding of Holstein heifers. J Dairy Sci 60:1941-1948, 1977. 
Head HH. Heifer Performance Standards: Rearing Systems, Growth Rates and  Lactation. In H. Van Horn and C. Wilcox, (eds.): In Large Dairy Herd  Management. Dairy Science Association, American Dairy Science  Association, Champaign, Ill., 1992, pp. 422-433. 
Heinrichs AJ. Opportunities in replacement heifer growth. Dairy Session III. Proc Am Assoc Bov Pract. pp 73-75, 1991. 
Heinrichs AJ, et al: Standards of weight and height for Holstein heifers. J Dairy Sci. 70:653-660, 1987. 
Hoard's Dairyman, Raising Dairy Heifers, A supplement. Nutrition is the  key to breeding age size. W. D. Hoard and Sons Co., Fort Atkinson,  Wisconsin. 1990. 
Hoffman, PC, et al: Growth rate of Holstein replacement heifers in  selected Wisconsin herds. Univ. WI Coll. Ag. and Life Sci Res. Rept.  R3551. 1992. 
James RE, et al: Heifer feeding and management systems. In H. Van Horn  and C. Wilcox, (eds): Large Dairy Herd Management. Dairy Science  Association, American Dairy Science Association, Champaign, Ill. 1992,  pp. 411-421. 
Kirking GA, et al: AI: Easy and Profitable. Dairy Herd Workshop. May, pp.34-36, 1991. 
LeBlanc MM. Management of calf herd programs. The Vet Clinics of North America, Vol 3 No 2::435-445, 1981. 
Reid JT, et al: Effect of plane of nutrition during early life on  growth, reproduction, production, health and longevity of Holstein cows.  1. Birth to fifth calving. Cornell Univ. Agr. Exp. Sta. Bull. No. 987.  1964. 
Serjsen K, et al: Influence of Nutrition on mammary development in pre and postpubertal heifers. J Dairy Sci. 65:793-800, 1982. 
Sinha YN, et al: Mammary development and pituitary prolactin level of  heifers from birth through puberty and during the estrous cycle. J Dairy  Sci 52:507-512, 1969. 
Stobo, IJF, et al: Rumen development in the calf, the effects of diets  containing different proportions of concentrates to hay on rumen  development. Br. J. Nutr. 20:171-188, 1966. 
Van Der Leek, ML, et al: Dairy Replacement Rearing Programs. In J. L.  Howard and M. F. Spire (eds): Current Veterinary Therapy, 3rd.  Philadelphia, W. B. Saunders, 1993, pp 147-153. 
Disclaimer Commercial products are named in this publication for  informational purposes only. Virginia Cooperative Extension does not  endorse these products and does not intend discrimination against other  products which also may be suitable.























